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This paper presents a theoretical analysis of perfect gas flow over a convex corner
of a rigid-body contour. It is assumed that the flow is subsonic before the corner. It
accelerates around the corner to become supersonic, and then undergoes an additional
acceleration in the expansion Prandtl–Meyer fan that forms in the supersonic part
of the flow behind the corner. The entire process is described by a self-similar
solution of the Kármán–Guderley equation. The latter shows that the boundary
layer approaching the apex of the corner is exposed to a singular pressure gradient,
dp/dx ∼ (−x)−3/5, where x denotes the coordinate measured along the body surface
from the corner apex. Under these conditions, the solution for the boundary layer also
develops a singularity. In particular, the longitudinal velocity near the body surface
behaves as U ∼ Y 1/2. Here Y is the normal coordinate scaled with the boundary-layer
thickness Re−1/2; Re being the Reynolds number, assumed large in this theory.

As usual, the boundary layer splits up into two parts, a viscous near-wall
sublayer and a locally inviscid main part of the boundary layer. The analysis of the
displacement effect of the boundary layer shows that neither the viscous sublayer nor
the main part determines the displacement thickness. Instead, the overlapping region
situated between them proves to be responsible for the shape of the streamlines at
the outer edge of the boundary layer. This leads to a significant simplification of the
analysis of the flow behaviour in the viscous–inviscid interaction region that forms
in a small vicinity of the corner. In order to describe the flow behaviour in this
region, one has to solve the Kármán–Guderley equation for the inviscid part of the
flow outside the boundary layer. The influence of the boundary layer is expressed
through a boundary condition, that relates the streamline deflection angle ϑ at the
outer edge of the boundary layer to the pressure gradient dp/dx acting upon the
boundary layer. The boundary-layer analysis leads to an analytical formula that
relates ϑ and dp/dx (unlike in previous studies of the viscous–inviscid interaction).
The interaction problem was solved numerically to confirm that the solution develops
a finite-distance singularity.

1. Introduction
The flow near a corner of a rigid-body contour represents an example where the

hierarchical strategy of the classical boundary-layer theory of Prandtl (1904) ceases
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Figure 1. Subsonic/supersonic flow past a corner.
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Figure 2. Three-tiered structure of the interaction region.

to be applicable. Instead, the theory of viscous–inviscid interaction should be used. It
was developed independently by Neiland (1969a) and Stewartson & Williams (1969)
for supersonic flow separating from a smooth body surface and by Stewartson (1969)
and Messiter (1970) for incompressible fluid flow past the trailing edge of a flat plate.
Theoretical investigations of the flow over corners started immediately after that. In
1970, Stewartson conjectured that the incipience of separation, both in subsonic and
supersonic flows, takes place when the angle θ swept by the tangent to the body
contour at the corner point (see figure 1) is an O(Re−1/4) quantity, where Re is the
Reynolds number.

Based on the asymptotic analysis of the Navier–Stokes equations at large values
of Re, Stewartson demonstrated that a small vicinity of the corner is occupied by
the region of interaction between the boundary layer and external inviscid flow.
This region is O(Re−3/8) long and has a three-tiered structure (see figure 2) being
composed of the viscous near-wall sublayer (region 1), the main part of the boundary
layer (region 2) and an inviscid potential flow (region 3) situated outside the boundary
layer.

The characteristic width of the viscous sublayer is estimated as being an O(Re−5/8)
quantity, so that it occupies an O(Re−1/8) portion of the boundary layer and is
comprised of the stream filaments immediately adjacent to the wall. The flow velocity
in this region is O(Re−1/8) relative to the free-stream velocity, and owing to the slow
motion of the fluid here, the flow exhibits high sensitivity to pressure variations.
Even a small pressure rise along the wall may cause significant deceleration of fluid
particles there. This leads to thickening of flow filaments, and the streamlines change
their shape, being displaced from the wall.

The middle tier of the interactive structure represents a continuation of the
conventional boundary layer. Its thickness is thus O(Re−1/2), and the velocity is
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an O(1) quantity. The flow in this tier is significantly less sensitive to the pressure
variations. It does not produce any noticeable contribution to the displacement effect
of the boundary layer, which means that all the streamlines in the middle tier are
parallel to each other and carry the deformation produced by the displacement effect
of the viscous sublayer.

Finally, the upper tier is situated in the potential flow region outside the boundary
layer. It serves to ‘convert’ the perturbation in the form of the streamline deflection
into a perturbation of pressure. The latter is then transmitted through the main part
of the boundary layer back to the sublayer.

For the separation to take place, a certain level of perturbation is necessary. It is
reached when the scaled ramp angle θ0 =Re1/4θ assumes a critical value. In order to
describe the flow behaviour in the interaction region, one needs to use the Prandtl
boundary-layer equations for region 1,

u
∂u

∂x
+ v

∂u

∂y
= −dp

dx
+

∂2u

∂y2
, (1.1)

∂u

∂x
+

∂v

∂y
= 0. (1.2)

These have to be solved with the no-slip condition on the ramp surface

u = v = 0 at y = 0, (1.3)

and the matching conditions with the solutions in the boundary layer upstream of
the interaction region

u = y at x = −∞ (1.4)

and in the middle tier (region 2)

u → y + A(x) + · · · as y → ∞. (1.5)

Function A(x) in (1.5) determines the shape of the streamlines in the main part of
the boundary layer, and for this reason is termed the displacement function. Using
(1.5) in (1.2) it may be easily deduced that at the outer edge of the viscous sublayer
v/u = −dA/dx. As the deformation of the streamlines, produced by the viscous
sublayer, remains unchanged across the middle tier (region 2), we can conclude that
at the ‘bottom’ of the upper tier (region 3) the slope of the streamlines is given by
ϑ = −dA/dx + df/dx. Here in addition to the displacement effect of the boundary
layer, the contribution of the body shape is taken into account. Function f (x) which
represents the body shape is written near the corner point as

f (x) =

{
0 if x < 0,

θ0x if x < 0.

Here θ0 might be either positive or negative, which corresponds to concave and
convex corners, respectively.

In order to determine the response of the inviscid flow outside the boundary layer
to the displacement effect, one has to analyse the flow in region 3. Here the thin
aerofoil theory is applicable. It allows the formulation of the so called ‘interaction
law’ which relates the induced pressure p to the displacement function A. In the case
of a supersonic flow it is given by Ackeret’s formula

p = −dA

dx
+

df

dx
. (1.6a)
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For a subsonic flow, it should be substituted by the Hilbert integral

p = − 1

π

∫ ∞

−∞

dA/ds − df/ds

s − x
ds. (1.6b)

In his original work, Stewartson (1970) concentrated on the solution of the linearized
version of the interaction problem (1.1)–(1.6). The latter is applicable in the case when
θ0 � 1, for which the corner merely causes a small perturbation to the boundary layer
that will remain attached to the body surface. The first numerical solution of the
full nonlinear problem was conducted by Jenson, Burggraf & Rizzetta (1975) for
supersonic flow and by Ruban (1976) for subsonic flow. Since then the problem has
been revisited on numerous occasions. Numerical results may be found in Korolev
(1991, 1992) for subsonic flows and in Korolev, Gajjar & Ruban (2002) supersonic
flows. The results of the calculations show that the subsonic flow separates both at
concave (θ > 0) and convex (θ < 0) corners with the critical values of θ0 being 2.51 and
−5.21, respectively. The supersonic flow separates only when the corner is concave.
This happens as soon as θ0 reaches a critical value of 1.57.

Large-scale separation of subsonic flow from a convex corner, that is observed
when θ in figure 1 is an order one negative quantity, was studied by Ruban (1974).
He found that in the limit when Re → ∞, the flow may be described by the Kirchhoff
(1869) model with the so called ‘free streamline’ emanating from the corner point.
The presence of the separation region influences the pressure field in such a way
that the pressure gradient acting on the boundary layer before the corner develops a
singularity,

dp

dx
= − κ

(−x)1/2
+ · · · as x → 0−. (1.7)

Here, x is a coordinate measured along the body contour from the corner point, and
κ is a positive O(1) constant. As a result of this singularity, the velocity profile in
the boundary layer approaching the separation region changes significantly, which in
turn leads to a shortening of the interaction region. Instead of being O(Re−3/8) long
(see figure 2), its longitudinal scale changes to O(Re−4/9). Still, the interaction process
remains in essence the same as in the starndard triple-deck theory, with the lower tier
generating the main contribution into the displacement effect, whilst the upper tier
acts to convert it into a pressure perturbation.

The transonic version of this problem was considered by Ruban & Turkyilmaz
(2000). They found that when the gas speed at the separation point coincides with
the speed of sound, the pressure gradient upstream of the interaction region becomes
even stronger, that is,

dp

dx
= − κ

(−x)2/3
+ · · · as x → 0−. (1.8)

This leads to a drastic change in the physical nature of the processes taking place
in the interaction region. Ruban & Turkyilmaz (2000) found that in this case, the
displacement of the boundary layer is produced mainly by the middle tier (region 2 in
figure 2) where the flow is inviscid. Consequently, the interaction process takes place
between the middle and upper tiers, and therefore, may be called inviscid–inviscid.

Experimental observations show that unlike incompressible fluid flows which always
separate from a convex corner, a perfect gas flow may assume two different forms.
The first one is a flow with separation from the corner point; it was considered earlier
by Ruban & Turkyilmaz (2000). The second possibility is that the flow remains fully
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Figure 3. Supersonic flow past a flat-faced plate.

attached to the body contour. It forms naturally in various physical situations (see
photographs 262–264 in Van Dyke 1982). A typical example is sketched in figure 3.
It reproduces figure 3.17.7 in Cherny (1988) and summarizes numerous numerical
simulations of the flow based on the inviscid calculations of various authors. Here, a
supersonic flow with a Mach number M > 1 approaches a flat-faced plate. The flow
remains unperturbed everywhere before the bow shock wave that forms in front of
the plate. The shock causes the gas to lose its speed abruptly, and this results in
the subsonic flow region (M < 1) between the shock and body face. The gas then
flows round the corners O and O ′. For incompressible fluid, the classical inviscid
flow theory predicts an unbounded velocity near a convex corner, and this result is
traditionally used to argue that an attached incompressible flow round a corner is
physically impossible.

Contrary to that, a gas can reach only a finite speed. It first accelerates to the
so-called ‘sonic line’ where the gas speed coincides with the local speed of sound, and
Mach number M = 1. The sonic line originates from the corner point and separates
the subsonic part of the flow from supersonic. Downstream of the sonic line the flow
experiences an additional acceleration in the Prandtl–Meyer expansion fan. Our task
in this paper is first to show that Prandtl–Meyer fan may occur near a corner point
in a variety of body shapes, and then to study the viscous–inviscid interaction region
that forms near the corner point.

2. Properties of the inviscid transonic flow
We assume that locally near point O the body surface has a shape as shown in

figure 4, i.e. it is flat upstream of point O , and bends up or down downstream of this
point. The curvature of the body contour is discontinuous at point O , which may be
viewed as a ‘corner’ even though the contour itself may be smooth.

It is well known that any two-dimensional steady inviscid flow of a perfect gas
satisfies the equation (see, for example, Cole & Cook 1986)(

â2 − û2
)∂û

∂x̂
+

(
â2 − v̂2

)∂v̂

∂ŷ
= ûv̂

(
∂v̂

∂x̂
+

∂û

∂ŷ

)
. (2.1)
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Figure 4. Geometrical layout of the flow.

Here x̂, ŷ are Cartesian coordinates and û, v̂ are velocity components with respect to
these coordinates. The ‘hat’ signifies a dimensional variable. For our purposes, it is
convenient to choose the coordinate system in such a way that the origin coincides
with point O and the x̂-axis is directed along the tangent to the body surface upstream
of this point.

The speed of sound is denoted in equation (2.1) by â. Its value at each point of the
flow field is related to the velocity components via the Bernoulli equation

â2

γ − 1
+

û2 + v̂2

2
=

â2
∞

γ − 1
+

V̂ 2
∞

2
, (2.2)

where γ is the ratio of specific heats, V̂ ∞ is the gas velocity in the unperturbed flow
upstream of the body and â∞ denotes the corresponding value of the speed of sound.

If the flow (in the local region of interest) is free of shock waves, or shock waves
are weak, which is always the case in the transonic regime, then it may be treated as
irrotational,

∂û

∂ŷ
− ∂v̂

∂x̂
= 0, (2.3)

and there exists a potential function Φ̂(x̂, ŷ) such that

û =
∂Φ̂

∂x̂
, v̂ =

∂Φ̂

∂ŷ
. (2.4)

Once the solution of equations (2.1)–(2.4) is found, one can determine the pressure
p̂ and density ρ̂ at each point in the flow field using the Bernoulli equation (2.2),
rewritten in the form

γ

γ − 1

p̂

ρ̂
+

û2 + v̂2

2
=

γ

γ − 1

p̂∞

ρ̂∞
+

V̂ 2
∞

2
, (2.5)

and the entropy conservation law

p̂

ρ̂γ
=

p̂∞

ρ̂
γ
∞

. (2.6)

Let the gas velocity, density and pressure at point O be denoted by V̂0, ρ̂0 and p̂0,
respectively. Using these quantities we introduce the non-dimensional variables,

û = V̂ 0u, v̂ = V̂ 0v, Φ̂ = V̂ 0LΦ,

â = V̂ 0a, ρ̂ = ρ̂0ρ, p̂ = p̂0 + ρ̂0V̂
2
0p,

x̂ = Lx, ŷ = Ly.

⎫⎬⎭ (2.7)
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Here, L is the characteristic dimension of the body. In what follows, we shall assume
that V̂ 0 coincides with the speed of sound â0 at point O . In essence the requirement,
V̂ 0 = â0, represents the transonic flow assumption. The ensuing analysis is concerned
with a locally transonic flow, which can be ‘embedded’ in a complex global flow (such
as that shown in figure 3). The latter may be supersonic and may even consist of
shocks.

Substitution of (2.7) into (2.1)–(2.4) gives(
a2 − u2

)∂u

∂x
+

(
a2 − v2

)∂v

∂y
= uv

(
∂v

∂x
+

∂u

∂y

)
, (2.8)

u =
∂Φ

∂x
, v =

∂Φ

∂y
, (2.9)

a2

γ − 1
+

u2 + v2

2
=

1

γ − 1
+ 1

2
. (2.10)

The Bernoulli equation (2.5) and entropy conservation law (2.6), written in non-
dimensional variables, take the form

u2 + v2

2
+

1

(γ − 1)ρ
+

γ

γ − 1

p

ρ
= 1

2
+

1

(γ − 1)
, (2.11)

1 + γp = ργ . (2.12)

In order to formulate the boundary conditions which should be applied when
solving equations (2.8)–(2.10), we shall write the equation for the body contour as

y = Yb(x).

Then the impermeability condition on the body surface requires that

v

u
= Y ′

b(x) at y = Yb(x). (2.13)

2.1. Self-similar solution

Let us assume that near point O ,

Yb(x) =

{
0, x < 0,

a0x
α, x > 0,

(2.14)

where constant a0 might be positive or negative so that the wall may bend up or
down. In what follows, parameter α is assumed to belong to the interval

α ∈ (1, 2) (2.15)

such that the tangent to the body contour remains continuous, but the curvature
is discontinuous and infinite at point O . In the rest of this section, we shall show
that a local similarity solution satisfying both upstream and downstream boundary
conditions may be constructed for each α ∈ (1, 8/5), with α =8/5 being the singular
limit. The relevance of the solution for the limiting case to the flow shown in figure 3
will be discussed at the end of this section.

Since no characteristic length scale can be ascribed to the body shape (2.14), the
solution of the problem (2.8)–(2.10), (2.13) can be sought (in a small vicinity of point
O) in a self-similar form. For the velocity potential Φ(x, y), we use the coordinate
asymptotic expansion

Φ(x, y) = x +
1

γ + 1
y3k−2F0(ξ ) + · · · as y → 0. (2.16)
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The first term on the right-hand side of (2.16) is chosen such that it gives the velocity
vector that is tangential to the body contour at point O and has a unit modulus as
required by the first of the non-dimensionalization formulae (2.7). Function F0(ξ ) in
the next term depends on the similarity variable

ξ =
x

yk
(2.17)

which is supposed to remain O(1) as x and y simultaneously tend to zero. The (3k−2)
power of y is chosen so that the dominant terms balance in (2.8). For the remaining
terms to be smaller, parameter k must be greater than one, but is otherwise undefined
at this stage.

Substitution of (2.16) and (2.17) into (2.9) yields

u = 1 +
1

γ + 1
y2k−2F ′

0(ξ ) + · · · , (2.18)

v =
1

γ + 1
y3k−3[(3k − 2)F0(ξ ) − kξF ′

0(ξ )] + · · · . (2.19)

Note that u → 1 and v → 0 as y → 0 since k > 1.
Now use of (2.18), (2.19) in the Bernoulli equation (2.10), gives the local sound

speed as

a = 1 − (γ − 1)

2(γ + 1)
y2k−2F ′

0(ξ ) + · · · . (2.20)

Using further (2.18) and (2.19) to calculate (u2 + v2) in (2.11) and then solving
equations (2.11), (2.12) for p and ρ, we find

p = − 1

γ + 1
y2k−2F ′

0(ξ ) + · · ·

ρ = 1 − 1

γ + 1
y2k−2F ′

0(ξ ) + · · ·

⎫⎪⎪⎬⎪⎪⎭ as y → 0. (2.21)

Notice that asymptotic expansions (2.18)–(2.21) are applicable in situations which are
not transonic as a whole but involve an O(1) Mach number variation, like the flow
shown in figure 3, where the Much number is zero at the front stagnation point, but
increases to one as the corner points O and O ′ are approached. Of course, it follows
from (2.18) and (2.20) that the Mach number is close to one near the corner points.

Now our task is to determine function F0(ξ ). Substituting (2.18) and (2.19) together
with (2.20) into (2.8) and setting y → 0, we arrive at the equation for F0(ξ ),

(F ′
0 − k2ξ 2)F ′′

0 − k(5 − 5k)ξF ′
0 + (3 − 3k)(3k − 2)F0 = 0. (2.22)

Boundary conditions for this equation may be deduced from the impermeability
condition (2.13). We note that near the body surface upstream of point O , the
similarity variable (2.17) is large and negative. As shown in Ruban & Turkyilmaz
(2000) the corresponding asymptotic solution of equation (2.22) may be written in
the form

F0(ξ ) = d0(−ξ )3−2/k + d1(−ξ )3−3/k + · · · as ξ → −∞, (2.23)

where d0 and d1 are constants. Substitution of (2.23) into (2.19) yields

v =
d1

γ + 1
(−x)3−3/k + · · · as x → 0−.



Viscous–inviscid interaction in transonic Prandtl–Meyer flow 395

Since the body surface is assumed to be flat upstream of point O , the impermeability
condition (2.13) reduces to

v

∣∣∣
y=0

= 0,

and we see that

d1 = 0. (2.24)

Similarly, downstream of point O ,

F0(ξ ) = b0ξ
3−2/k + b1ξ

3−3/k + · · · as ξ → +∞. (2.25)

Substitution of (2.25) into (2.18) and (2.19) yields

u = 1 +
1

γ + 1

[
b0

(
3 − 2

k

)
x2−2/k + b1

(
3 − 3

k

)
yx2−3/k + · · ·

]
, (2.26)

v =
b1

γ + 1
x3−3/k + · · · . (2.27)

Now we can substitute (2.26), (2.27) together with (2.14) into the impermeability
condition (2.13). We find that parameter k in the self-similar solution (2.16), (2.17) is
related to parameter α in the equation for the body contour (2.14) as

k =
3

4 − α
, (2.28)

and the second coefficient b1 in the asymptotic expansion (2.25) is related to the factor
a0 in (2.14) as

b1 = α(γ + 1)a0. (2.29)

Equation (2.22), considered with the upstream (2.23), (2.24) and downstream (2.25),
(2.29) conditions, constitutes a boundary-value problem for function F0(ξ ). It may
be easily converted into an initial-value problem because equation (2.22) admits the
invariant transformation

ξ −→ Λξ, F0 −→ Λ3F0, (2.30)

with Λ being an arbitrary constant. This means that without loss of generality one
can choose d0 in (2.23) to be d0 = 1 for all positive d0, and d0 = −1 for all negative
d0. We shall concentrate here on the former case. It corresponds to the flow which
is subsonic upstream of point O , but accelerates as this point is approached. Indeed,
substitution of (2.23) into (2.18) yields to the leading order

u = 1 − d0

γ + 1

(
3 − 2

k

)
(−x)2−2/k + · · · as x → 0−.

It follows from 2.28 that corresponding to (2.15) the range of variation of k is
(
1, 3/2

)
,

and we see that u < 1 for all d0 > 0.
In view of condition (2.24), the second term in (2.23) vanishes, and after calculating

the next-order term we have

F0(ξ ) = (−ξ )3−2/k +
(3k − 2)2(1 − k)

k3
(−ξ )3−4/k + · · · as ξ → −∞. (2.31)

This formula was used in our calculations to determine the initial conditions for
F0 and F ′

0 at the left-hand side boundary ξ = ξmin of the computational domain
ξ ∈ [ξmin, ξmax]. Equation (2.22) was then integrated numerically from ξ = ξmin towards
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Figure 5. Results of the numerical solution of equation (2.22) for k = 1.18 through k = 1.24
with the interval �k = 0.01.
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Figure 6. The behaviour of the coefficients b0 and b1 of the asymptotic expansion (2.25).

ξ = ξmax for different values of k. A number of computational domains were tried;
the largest was [−70, 70]. A uniform mesh was used throughout this study with up
to 2000 node points between ξ = ξmin and ξ = ξmax. The results proved to be mesh
independent to the graphic accuracy, and are presented in figures 5 and 6. Figure 5
displays the derivative of function F0(ξ ). Formula (2.18) shows that the flow is
subsonic as long as F ′

0(ξ ) remains negative, and turns into supersonic when F ′
0(ξ )

becomes positive. Notice that for all k < 6/5, the flow first accelerates and then, after
F ′

0(ξ ) reaches a maximum, starts to decelerate slightly; it remains subsonic in the
entire interval ξ ∈ (−∞, ∞). Monotonic increase of F ′

0(ξ ) is first observed at k = 6/5
when the gas velocity tends to the speed of sound as ξ → ∞. For larger values of
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k, the flow acceleration leads to the formation of a supersonic region beyond some
value of ξ .

Figure 6 shows the behaviour of coefficients b0 and b1 in the downstream asymptotic
expansion (2.25). We see that b0 becomes zero at k = 6/5. Hence, for this value of k,
expansion (2.25) is written as

F0(ξ ) = b1ξ
1/2 + · · · as ξ → ∞,

and therefore the derivative

F ′
0(ξ ) = 1

2
b1ξ

−1/2 + · · · as ξ → ∞

really tends to zero as figure 5 suggests.
The solution develops a singularity at k = 5/4 when both b0 and b1 become infinite.

We were unable to find solutions to equation (2.22) with initial condition (2.31) for
k � 5/4.

2.2. Phase portrait

In order to understand better what happens when k approaches 5/4, we shall study
the solution in a phase plane (see Buldakov & Ruban 2002). Guided by (2.18) and
(2.19), we represent the velocity components in the form

u = 1 +
1

γ + 1
y2k−2F (ξ ) + · · ·

v =
1

γ + 1
y3k−3G(ξ ) + · · ·

⎫⎪⎪⎬⎪⎪⎭ as y → 0. (2.32)

Asymptotic expansion (2.20) for the speed of sound is now written as

a = 1 − (γ − 1)

2(γ + 1)
y2k−2F (ξ ) + · · · as y → 0. (2.33)

Equations for F (ξ ) and G(ξ )

dF

dξ
= (k − 1)

3G − 2kξF

F − k2ξ 2
,

dG

dξ
= (k − 1)

2F 2 − 3kξG

F − k2ξ 2
, (2.34)

may be deduced by substituting (2.32)–(2.33) into (2.8) and the irrotation condition
(2.3), Alternatively, we can see that

F (ξ ) = F ′
0(ξ ), G(ξ ) = (3k − 2)F0(ξ ) − kξF ′

0(ξ ), (2.35)

and deduce equations (2.34) by manipulating (2.22).
Invariant transformation (2.30) is now written as

ξ −→ Λξ, F −→ Λ2F, G −→ Λ3G.

In order to make the solution independent on the group parameter Λ, one can
introduce instead of F (ξ ) and G(ξ ) new functions f (ξ ) and g(ξ )

f (ξ ) =
F (ξ )

k2ξ 2
, g(ξ ) =

G(ξ )

k3ξ 3
. (2.36)

Now each trajectory in the (f, g)-phase plane will represent a family of solutions for
all possible values of Λ. Introducing further a new independent variable χ such that

dχ =
dξ

(f − 1)kξ
, (2.37)
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we arrive at the following non-singular autonomous system

df

dχ
= 2f + 3(k − 1)g − 2kf 2,

dg

dχ
= 2(k − 1)f 2 − 3kfg + 3g.

⎫⎪⎬⎪⎭ (2.38)

The independent variable transformation (2.37) divides the phase plane into two
sheets, one for ξ < 0 and another for ξ > 0. The latter differs from the former only by
the direction of change of the original coordinate ξ with respect to the new coordinate
χ . Each of the sheets has a singular line f =1 where ξ changes its direction as well.
An intersection of this line by a trajectory in the phase plane creates a turning point
in the physical space, and therefore the corresponding solutions have no physical
meaning.

The set of equations (2.38) has three critical points, where df/dχ = dg/dχ =0.
They are A(0, 0), B

(
1, 2/3

)
and C

(
1/k2, −2/3k3

)
. We shall consider point A first. The

linear approximation of (2.38) about this point is written as

df

dχ
= 2f + 3(k − 1)g,

dg

dχ
= 3g, (2.39)

with the general solution being

f = C1e
2χ + C2e

3χ , g =
C2

3(k − 1)
e3χ , (2.40)

where C1 and C2 are arbitrary constants. Elimination of the independent variable χ

from (2.40) leads to

f − 3(k − 1)g = cg2/3, c = C1

[
3(k − 1)

C2

]2/3

. (2.41)

We see that point A is a node; its two half-lines being

g =
1

3(k − 1)
f, g = 0. (2.42a, b)

In order to establish the correspondence between the phase plane (f, g) and the
solution behaviour in the physical plane, we must use equation 2.37, which on noting
that f ≈ 0 near A, may be written as

dχ = −1

k

dξ

ξ
.

Performing the integration, we find

χ = C̃ − 1

k
ln |ξ |. (2.43)

Let us now return to equations (2.40). They show that point A is reached in the limit
when χ → −∞. According to (2.43), this is achieved by setting |ξ | → ∞. Hence, point
A in the phase plane represents the body surface both upstream and downstream of
point O (see figure 4). For the flow upstream of O , the asymptotic formula (2.23) is
valid. Recasting this formula in terms of functions f and g through (2.35), (2.36) and
eliminating ξ , yields

f = cg2/3, (2.44)
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Figure 7. Phase plane representation of the solutions shown in figure 5.

where

c = −
(

3 − 2

k

)
d0

d
2/3
1

.

Notice that (2.44) represents the leading-order approximation to (2.41) in a
neighbourhood of point A where both f and g are small. Notice further that the
particular solution for the body surface that is flat upstream of point O should satisfy
condition (2.24), in which case c = ∞. The corresponding trajectory in the phase plane
emanates from the node point A along the half-line (2.42b). A more precise equation
for the shape of the trajectory,

g = (2k − 2)f 2, (2.45)

may be deduced by manipulating (2.31) instead of (2.23).
The flow near the body surface downstream of point O is described by the

asymptotic expansion (2.25). Using (2.25) in (2.35) and (2.36) also leads to (2.44), now
with

c =

(
3 − 2

k

)
b0

b
2/3
1

.

Figure 7 is the phase plane representation of the solutions shown in figure 5. As was
predicted, all the trajectories emerge from point A at ξ = −∞ and follow the parabola
2.45 along its left-hand side branch. This is a consequence of the assumption that the
flow is subsonic (u < 1) before the corner which, according to (2.36) and (2.32), requires
that f < 0. The solution remains in the subsonic half-plane (f < 0) for all ξ < 0. As
ξ → 0−, the point in the phase plane (f, g) approaches infinity, simply by virtue of the
definition (2.36) of functions f and g. Both F (ξ ) and G(ξ ) in (2.36) remain continuous
at ξ = 0. Therefore, as ξ crosses over to positive values, function f remains unchanged
while g changes its sign. This means that the solution jumps (through the ‘infinity’)
to another trajectory being reflected in the f -axis. As ξ increases further, the solution
returns to point A, remaining all the way in the subsonic half-plane provided that
k < 6/5. When parameter k increases beyond k =6/5, a part of the trajectory crosses
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Figure 8. The solution behaviour for k = 1.249 (solid line) and k = 1.251 (dashed line).

over to the right-half plane, signifying that the corresponding region in the flow field
appears to be supersonic.

What happens in the vicinity of k =1.25 is illustrated by figure 8. We can see that
because of the presence of critical point C

(
1/k2, −2/3k3

)
, the solution drastically

changes its behaviour when parameter k passes through k = 5/4. For any k < 5/4, no
matter how close to k = 5/4, the trajectory still returns to point A, but for k > 5/4, it
turns away toward the singular line f = 1. This line is reached at a finite value ξs of
the self-similar variable ξ , signifying that the corresponding solution cannot represent
a real flow.

We shall now examine the behaviour of the solution near critical point
C

(
1/k2, −2/3k3

)
. The linear approximation of equations (2.38) about this point has

the form

df

dχ
=

2

k
(k − 2)

(
f − 1

k2

)
+ 3(k − 1)

(
g +

2

3k3

)
,

dg

dχ
=

2

k2
(2k − 1)

(
f − 1

k2

)
+

3

k
(k − 1)

(
g +

2

3k3

)
.

(2.46)

The general solution of (2.46) is written as

f − 1

k2
=C1 exp(λ1χ)+C2 exp(λ2χ), g +

2

3k3
= −1

k
C1 exp(λ1χ) +

2(2k − 1)

3k(k − 1)
C2 exp(λ2χ),

(2.47)
where

λ1 = −
(

1

k
+ 1

)
, λ2 = 6

(
1 − 1

k

)
.

Elimination of the independent variable χ from (2.47) leads to[
g̃ − αf̃

C2(β − α)

]λ1

=

[
g̃ − βf̃

C1(α − β)

]λ2

, (2.48)
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where

f̃ = f − 1

k2
, g̃ = g +

2

3k3
, α = −1

k
, β =

2(2k − 1)

3k(k − 1)
.

Since λ1 and λ2 have opposite signs, equation (2.48) represents a saddle point. Its
separatrices are

g +
2

3k3
= −1

k

(
f − 1

k2

)
, g +

2

3k3
=

2(2k − 1)

3k(k − 1)

(
f − 1

k2

)
. (2.49a, b)

We shall study (2.49b) in detail, as it apparently represents the limiting trajectory
in the phase plane as k → 5/4 (see figure 8). For the solution to find itself on this
separatrix, we have to choose C1 = 0 in (2.47). This yields

f =
1

k2
+ C2 exp(λ2χ), g = − 2

3k3
+

2(2k − 1)

3k(k − 1)
C2 exp(λ2χ). (2.50)

Near point C, equation (2.37) may be written as

dχ =
dξ(

1/k2 − 1
)
kξ

which can be integrated to give

χ = C̃ − k

k2 − 1
ln |ξ |. (2.51)

Since λ2 is positive for any k > 1, we can conclude from (2.50) that point C is reached
when χ → −∞. According to (2.51), this is only possible if |ξ | → ∞.

Substitution of (2.51) into (2.50) results in

f =
1

k2
+ Ĉ|ξ |−6/(k+1) + · · ·

g = − 2

3k3
+

2(2k − 1)

3k(k − 1)
Ĉ|ξ |−6/(k+1) + · · ·

⎫⎪⎬⎪⎭ as |ξ | → ∞, (2.52)

where we have put

Ĉ = C2 exp(6C̃(1 − 1/k)).

2.3. Transonic Prandtl–Meyer flow

Here, we aim to demonstrate that the trajectory in the phase plane that terminates at
the saddle point C represents transonic flow accelerating into a supersonic Prandtl–
Meyer fan. It is well known that a complete description of the Prandtl–Meyer flow
field is given by the equation (see, for example, Liepmann & Roshko 1957)

ϑ + σ (λ) = const. (2.53)

Here, ϑ is the angle made by the velocity vector with the x-axis, λ is the normalized
velocity

λ =

√
û2 + v̂2

V0

=
√

u2 + v2,

and σ (λ) the Prandtl–Meyer function

σ (λ) =

∫ λ

1

√
λ2 − 1

1 − (γ − 1)/(γ + 1)λ2

dλ

λ
. (2.54)
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In the transonic speed range, λ − 1 � 1, and thus we may approximate the integral
(2.54) as

σ (λ) = 2
3

√
γ + 1 (λ − 1)3/2 + · · · as λ → 1, (2.55)

and it follows from (2.53) that with small λ − 1, the directional angle ϑ must also be
small, namely, λ − 1 = O(ϑ2/3). Taking this into account, we can deduce that

u = λ cosϑ = 1 + (λ − 1) + O(ϑ2), v = λ sinϑ = ϑ + O
(
ϑ5/3

)
,

which allows us to write (2.55) as σ (λ) = 2
3

√
γ + 1 (u − 1)3/2, and the Prandtl–Meyer

equation (2.53) takes the form

v + 2
3

√
γ + 1 (u − 1)3/2 = const. (2.56)

Finally, we substitute (2.32) into (2.56). Here, for the solution to be self-similar, the
constant on the right-hand side of (2.56) should be set to zero, leading to

G + 2
3
F 3/2 = 0. (2.57)

Substitution of (2.35) into (2.57) yields

(3k − 2)F0(ξ ) − kξF ′
0(ξ ) + 2

3
[F ′

0(ξ )]2/3 = 0.

It is easily verified that the solution of this equation has the form

F0(ξ ) = 1
3
ξ 3. (2.58)

Substituting (2.58) back into (2.35), and calculating f and g with the help of (2.36),
we have

f =
1

k2
, g = − 2

3k3
.

This shows that formula (2.58) represents only the final point of the trajectory we
are interested in, namely, the saddle point C. Hence, (2.58) should be treated as
the leading-order term of the asymptotic expansion of function F0(ξ ) as ξ → ∞. The
next-order term may be determined directly from equation (2.22). We find

F0(ξ ) = 1
3
ξ 3 + ă ξ 3(k−1)/(k+1) + · · · as ξ → ∞, (2.59)

where ă is a constant. Calculating f and g again, yields

f =
1

k2
+

3ă

k2

k − 1

k + 1
ξ−6/(k+1) + · · ·

g = − 2

3k3
+

2ă

k3

2k − 1

k + 1
ξ−6/(k+1) + · · ·

⎫⎪⎪⎬⎪⎪⎭ as ξ → ∞. (2.60)

Comparison of (2.60) with (2.52) shows that (2.59) indeed represents the solution that
approaches the saddle point C along the separatrix (2.49b). It further follows from
(2.60) that for the saddle point to be approached from below, as figure 8 suggests,
constant ă in (2.60) should be negative.

We now return to the task of calculating the solution of equation (2.22) for k = 5/4.
In order to avoid the problem with ‘branching’ of the solution on the approach to the
critical point C (see figure 8), the integrations can be performed backwards starting
from a large enough positive value of ξ , where the initial conditions for function F0

and its derivative F ′
0 can be prescribed using (2.59). Constant ă in (2.59) can be set to

ă = −1 without loss of generality thanks to the invariant transformation (2.30). The
results of the calculations are shown in figure 9, where F ′

0 is plotted against ξ .



Viscous–inviscid interaction in transonic Prandtl–Meyer flow 403

–5

–30 –20 –10
ξ

0 10

0

5

10

15

F
′ 0(

ξ
)

Figure 9. Results of the numerical solution of equation (2.22) for k = 5/4.
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Figure 10. The behaviour of the coefficients d0 and d1 of the asymptotic expansion (2.23).

Of course, this sort of calculation, when equation (2.22) is solved with downstream
boundary condition (2.59), may be conducted for other values of k. The coefficients d0

and d1 of the asymptotic expansion (2.23) may be easily extracted from the numerical
solution, and their behaviour is shown in figure 10. We see that the impermeability
condition (2.24) is satisfied only for one value of k, namely, for k = 5/4.

The possibility of the solution described above existing was earlier seen by Guderley
(1948). His analysis was based on the hodograph method, which allowed him to con-
struct the solution in an analytical form. However, at the time, the physical meaning
of the hodograph solution was unclear. Now the analysis presented above shows
that the solution corresponds to a Prandtl–Meyer fan. The exact form of the solu-
tion is of little relevance for the analysis in the rest paper, and it suffices to note
that Guderley’s solution confirms that parameter k is not just close to 1.25, as the
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numerical solution suggests, but equals precisely 5/4. For a discussion of various
aspects of this type of flow, see also Vaglio-Laurin (1960) and Diyesperov (1994).

2.4. Physical interpretation of the results

The above analysis shows that in transonic flow over a rigid body whose surface has
the form defined by (2.14), two flow regimes can be distinguished. Provided 1<k < 5/4
(which corresponds to 1<α < 8/5) the solution is uniquely defined by the body shape.
In particular, parameter k is given by (2.28), and coefficient b1 in the downstream
asymptotic expansion (2.25) is related to factor a in (2.14) through equation (2.29).
For k ∈ (1, 6/5) the flow remains subsonic everywhere, and it is natural that the flow
depends on the boundary conditions both upstream and downstream of point O . We
found that for 6/5 < k < 5/4, a supersonic region forms in the flow downstream of
point O . Despite this, the solution remains dependent on the body shape behind point
O , which means that the perturbations are still capable of propagating through the
flow in the upstream direction. This is because the characteristics originating from the
surface downstream intersect with the sonic line, and thus the disturbances (including
the influence of the downstream boundary) can reach the sonic line first, after which
they propagate upstream in the subsonic region of the flow.

However, as soon as parameter k reaches its critical value k = 5/4, the flow exhibits
very fast acceleration into the Prandtl–Meyer fan (see figure 9) which ‘blocks’ upstream
propagation of the perturbations. As a result the flow field ‘freezes’, in the sense that
it can no longer change with further bending of the body contour downstream of
point O . This suggests that the solution with k = 5/4 is actually applicable to a variety
of flows, where the gas undergoes acceleration from subsonic to supersonic speed to
form a Prandtl–Meyer fan around a corner (or, more generally, a point where the
body curvature is discontinuous). The supersonic flow shown in figure 3 obviously
belongs to this category.

Before turning to the flow analysis in the boundary layer, we must calculate the
pressure acting upon the boundary layer on the approach to point O (see figure 4).
Substituting (2.23) into (2.21) and recalling that ξ = x/yk , we find

p =
d0

γ + 1

(
3 − 2

k

)
(−x)2−2/k + · · · as x → 0−.

For the limiting case k = 5/4, which will be the focus of the rest of the paper, we
have,

p

∣∣∣
y=0

= κ(−x)2/5 + · · · as x → 0−, (2.61)

where

κ =
7

5

d0

γ + 1
.

3. Classical boundary layer upstream of the interaction region
For the analysis of the flow in the boundary layer that forms on the body surface,

it is convenient to use orthogonal curvilinear coordinates x̂ ′, ŷ ′ where x̂ ′ is measured
along the body contour from point O and ŷ ′ in the perpendicular direction (11). The
velocity components in these coordinates will be denoted by û′ and v̂′. The pressure
and gas density are denoted, as before, by p̂ and ρ̂. In the boundary layer, we must
also consider the enthalpy ĥ and dynamic viscosity µ̂. The non-dimensional variables
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are similar to (2.7),

û′ = V̂ 0u
′, v̂′ = V̂ 0v

′, p̂ = p̂0 + ρ̂0V̂
2
0p,

ρ̂ = ρ̂0ρ, ĥ = V̂ 2
0h, µ̂ = µ̂0µ,

x̂ = Lx ′, ŷ = Ly ′.

Recall that suffix ‘0’ indicates the values of the corresponding quantities immediately
outside the boundary layer at point O of the body contour, where the gas velocity
coincides with the speed of sound.

In what follows, we shall assume that the Reynolds number,

Re =
ρ̂0V̂ 0L

µ̂0

,

is large. The asymptotic expansions of the gas dynamic functions in the boundary
layer (in what follows we shall call it region 2) are sought in the form

u′(x ′, y ′; Re) = U0(x
′, Y ) + · · · , v′(x ′, y ′; Re) = Re−1/2V0(x

′, Y ) + · · · ,
p(x ′, y ′; Re) = P0(x

′, Y ) + · · · , ρ(x ′, y ′; Re) = R0(x
′, Y ) + · · · ,

h(x ′, y ′; Re) = h0(x
′, Y ) + · · · , µ(x ′, y ′; Re) = µ0(x

′, Y ) + · · · ,

⎫⎬⎭ (3.1)

where, as usual, the coordinate normal to the wall is scaled as

Y = Re1/2y ′.

Substitution of (3.1) into the Navier–Stokes equations yields

R0

(
U0

∂U0

∂x ′ + V0

∂U0

∂Y

)
= −∂P0

∂x ′ +
∂

∂Y

(
µ0

∂U0

∂Y

)
, (3.2)

R0

(
U0

∂h0

∂x ′ + V0

∂h0

∂Y

)
= U0

∂P0

∂x ′ +
1

Pr

∂

∂Y

(
µ0

∂h0

∂Y

)
+ µ0

(
∂U0

∂Y

)2

, (3.3)

∂(R0U0)

∂x ′ +
∂(R0V0)

∂Y
= 0, (3.4)

h0 =
1

(γ − 1)R0

+
γ

γ − 1

P0

R0

. (3.5)

Equations (3.2)–(3.5) are, respectively, the momentum equation projected upon the
longitudinal coordinate x ′, the energy equation with Pr being the Prandtl number, the
continuity equation and the state equation. It further follows from the y ′-component
of the momentum equation that

∂P0

∂Y
= 0,

i.e. to the leading-order approximation, the pressure does not change across the
boundary layer. Hence, using (2.61), we can conclude that inside the boundary layer

∂P0

∂x ′ = − 2
5
κ(−x ′)−3/5 + · · · as x ′ → 0−. (3.6)

Here it is noted that to the left of point O , where the body surface is flat, the
Cartesian coordinates, (x, y), coincide with curvilinear coordinates, (x ′, y ′).

We shall now construct asymptotic solution of equations (3.2)–(3.5) as x ′ → 0−.
Since the boundary layer is exposed to the singular pressure gradient (3.6), it splits
up into two subregions, the main part of the boundary layer shown in figure 11 as
region 2a and near-wall sublayer 2b. We shall start with the sublayer 2b.
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Figure 11. Splitting of the boundary layer upstream of the interaction region.

3.1. Region 2b

Taking into account that the fluid particles in region 2b experience extreme
acceleration caused by the singular favourable pressure gradient, we have to expect
that the convective terms on the left-hand side of the momentum equation (3.2) are
of the same order of magnitude as the pressure gradient on the right-hand side of
this equation, which may be expressed as follows

R0U0

∂U0

∂x ′ ∼ ∂P0

∂x ′ . (3.7)

Since the no-slip condition at the aerofoil surface has to be satisfied by the solution
in region 2b, we further require that the flow in this region be viscous, i.e.

R0U0

∂U0

∂x ′ ∼ ∂

∂Y

(
µ0

∂U0

∂Y

)
. (3.8)

Let us denote the value of the non-dimensional enthalpy h0 at the ‘bottom’ of the
boundary layer at point O by hw . The corresponding values of the non-dimensional
density R0 and viscosity µ0 will be denoted by ρw and µw , respectively. If the body
surface is not artificially heated or cooled, then ρw and µw are order-one quantities.
Taking this into account, we can deduce from (3.7) and (3.6) that in the viscous
sublayer 2b

U0 ∼ (−x ′)1/5. (3.9)

Using (3.9) in (3.8), we find that the thickness of region 2b is estimated as

Y ∼ (−x ′)2/5. (3.10)

Since the flow is two-dimensional, it is convenient to use the stream function
Ψ0(x

′, Y ). Its existence follows from the continuity equation (3.4), which shows that
this function should be defined such that

∂Ψ0

∂Y
= R0U0,

∂Ψ0

∂x ′ = −R0V0. (3.11a, b)

From (3.11a) and estimates (3.9) and (3.10) it follows that

Ψ0 ∼ U0Y ∼ (−x ′)3/5.

This suggests that the asymptotic expansion of the stream function in the viscous
sublayer 2b should be sought in the form

Ψ0(x
′, Y ) = (−x ′)3/5ψ(η) + · · · as x ′ → 0−, (3.12)
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where, on account of (3.10), the similarity variable η is defined as

η =
Y

(−x ′)2/5
. (3.13)

In order to deduce the form of the asymptotic expansions of the density R0 and
dynamic viscosity µ0, one needs to estimate the enthalpy variations in region 2b by
using the energy equation (3.3). Comparing the heat transfer term on the right-hand
side of this equation with the mechanical energy dissipation

1

Pr

∂

∂Y

(
µ0

∂h0

∂Y

)
∼ µ0

(
∂U0

∂Y

)2

,

we see that the variations of the enthalpy

|h0 − hw| ∼ U 2
0 ∼ (−x ′)2/5.

Using further the state equation (3.5) we have

|R0 − ρw| ∼ (−x ′)2/5,

and, since the viscosity µ0 is a function of the enthalpy, we can write

|µ0 − µw| ∼ (−x ′)2/5.

This shows that the sought asymptotic expansions of the density and viscosity in
region 2b may be represented in the form

R0(x
′, Y ) = ρw + (−x ′)2/5ρ̃(η) + · · ·

µ0(x
′, Y ) = µw + (−x ′)2/5µ̃(η) + · · ·

}
as x ′ → 0−. (3.14a, b)

In the viscous sublayer, it suffices to know the leading terms, so the solution for the
correction terms, ρ̃ and µ̃(η), need not be worked out.

Substitution of (3.12) and (3.13) together with (3.14) into (3.11) and then into (3.2)
results in the following equation for ψ(η):

µwψ ′′′ − 3
5
ψψ ′′ + 1

5
(ψ ′)2 + 2

5
κρw = 0. (3.15)

It should be solved subject to the no-slip condition on the rigid-body surface

ψ(0) = ψ ′(0) = 0, (3.16)

and a requirement that ψ(η) does not grow exponentially as η → ∞; an exponentially
growing ψ(η) must be ruled out because otherwise the matching of solutions in
regions 2b and 2a (see figure 11) would be impossible.

The latter suggests that the leading-order term of the asymptotic expansion of
function ψ(η) near the outer edge of the viscous sublayer should be sought in the
algebraic form

ψ(η) = Aηα + · · · as η → ∞, (3.17)

where A and α are unknown constants. Differentiating (3.17), we find

µwψ ′′′ = µwAα(α − 1)(α − 2)ηα−3 + · · · ,
3
5
ψψ ′′ = 3

5
A2α(α − 1)η2α−2 + · · · ,

1
5
(ψ ′)2 = 1

5
A2α2η2α−2 + · · · .

This shows that, if we assume (subject to subsequent confirmation) that α > 1, then the
first and fourth terms in equation (3.15), representing the viscous force and pressure
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gradient, respectively, appear to be small as compared to the second and third terms,
and therefore, at large η, equation (3.15) reduces to

1
5
A2[α2 − 3α(α − 1)]η2α−2 = 0.

Since we are looking for a non-trivial solution (A 
= 0), we have to set α2−3α(α−1) = 0.
This quadratic has two roots

α = 3
2
, α = 0.

Only the first of these satisfies condition α > 1, and we can conclude that the leading-
order term (3.17) of the asymptotic expansion of function ψ(η) is written as

ψ(η) = Aη3/2 + · · · as η → ∞.

Let us now find the next-order term. We write

ψ(η) = Aη3/2 + Bηβ + · · · as η → ∞, (3.18)

where B is a constant. Since the second term in (3.18) has to be small compared to
the first one, we have to assume that

β < 3
2
. (3.19)

Differentiating (3.18), we find

µwψ ′′′ = − 3
8
Aµwη−3/2 + µwBβ(β − 1)(β − 2)ηβ−3 + · · · ,

3
5
ψψ ′′ = 9

20
A2η + 3

5
AB

[
3
4

+ β(β − 1)
]
ηβ−1/2 + · · · , (3.20)

1
5
(ψ ′)2 = 9

20
A2η + 3

5
ABβηβ−1/2 + · · · . (3.21)

Obviously, the viscous term is negligible compared with the two inertia terms. If
β > 1/2, the pressure gradient 2κρw/5 is negligible in equation (3.15), which then
reduces to

AB
(
β2 − 2β + 3

4

)
ηβ−1/2 = 0.

It follows that β2 − 2β + 3/4 = 0. The two roots of this equation are

β = 3
2
, β = 1

2
.

The first one does not satisfy restriction (3.19), and therefore should be disregarded.
However, if we choose the second root, β =1/2, then the pressure gradient 2κρw/5 in
(3.15) interferes with the balance of the inertial (i.e. the second terms in (3.20) and
(3.21)) terms since they are all of the same order. A dilemma then arises because
the inertial terms cancel out, leaving nothing to balance the pressure. Situations like
this are normally resolved by introducing logarithmic terms. We shall use, instead of
(3.18), the following asymptotic expansion

ψ(η) = Aη3/2 + B̃η1/2 ln η + Bη1/2 + · · · as η → ∞. (3.22)

Substitution of (3.22) into equation (3.15) yields

B̃ = −2

3

κρw

A
,

where A, B̃ and B are constants. They are determined by solving the boundary-value
problem (3.15)–(3.16). The parameters in (3.15) can be eliminated by suitably rescaling
both the dependent and independent variables. Using the numerical solution of the
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resulting canonical equation, we find that

A ≈ 1.38µw(κρw/µ2
w)5/8, B̃ ≈ −0.48µw(κρw/µ2

w)3/8,

B ≈ µw(κρw/µ2
w)3/8

(
−1.61 − 0.48 ln(κρw/µ2

w)1/4
)
.

In order to determine the velocity components in region 2b, we must substitute (3.12),
(3.13) and (3.14a) into equations (3.11). This results in

U0 = (−x ′)1/5 1

ρw

ψ ′(η) + · · ·

V0 = (−x ′)−2/5 1

ρw

(
3

5
ψ − 2

5
ηψ ′

)
+ · · ·

⎫⎪⎪⎬⎪⎪⎭ as x ′ → 0−. (3.23)

Substituting (3.22) into (3.23), we find that at the outer edge of region 2b

U0 = (−x ′)1/5 1

ρw

[
3
2
Aη1/2 + 1

2
B̃η−1/2 ln η +

(
B̃ + 1

2
B

)
η−1/2

]
+ · · · ,

V0 = (−x ′)−2/5 1

ρw

[
2
5
B̃η1/2 ln η + 2

5
(B − B̃)η1/2

]
+ · · · .

⎫⎪⎪⎬⎪⎪⎭ (3.24)

3.2. Region 2a

Asymptotic analysis of the boundary-layer equations (3.2)–(3.5) in the main part of
the boundary layer (region 2a in figure 11) is based on the limit procedure

Y = O(1), x ′ → 0−.

The form of the solution in this region may be deduced based on the matching
principle of asymptotic expansions. According to Kaplun’s extension theorem,
formulae (3.24) are valid in the overlapping region situated between the viscous
sublayer 2b and the main part of the boundary layer 2a. Therefore, they may also be
used at the ‘bottom’ of region 2a. Rewriting (3.24) in terms of Y using (3.13), we have

U0 =
3A

2ρw

Y 1/2 + (−x ′)2/5 ln(−x ′)

{
− B̃

5ρw

1

Y 1/2

}
+ (−x ′)2/5

{
B̃

2ρw

lnY

Y 1/2
+

(
B̃

ρw

+
B

2ρw

)
1

Y 1/2

}
+ · · · , (3.25)

V0 = (−x ′)−3/5 ln(−x ′)

{
− 4B̃

25ρw

Y 1/2

}
+ (−x ′)−3/5

{
2B̃

5ρw

Y 1/2 lnY +
2

5

B − B̃

ρw

Y 1/2

}
+ · · · . (3.26)

Guided by (3.25) and (3.26) as well as the matching principle, we represent the
solution in region 2a in the form of the coordinate expansions

U0(x
′, Y ) = U00(Y ) + (−x ′)2/5 ln(−x ′)U01(Y ) + (−x ′)2/5U02(Y ) + · · · ,

V0(x
′, Y ) = (−x ′)−3/5 ln(−x ′)V01(Y ) + (−x ′)−3/5V02(Y ) + · · · ,

R0(x
′, Y ) = R00(Y ) + (−x ′)2/5 ln(−x ′)R01(Y ) + (−x ′)2/5R02(Y ) + · · · ,

h0(x
′, Y ) = h00(Y ) + (−x ′)2/5 ln(−x ′)h01(Y ) + (−x ′)2/5h02(Y ) + · · · ,

µ0(x
′, Y ) = µ00(Y ) + O

[
(−x ′)2/5 ln(−x ′)

]
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.27)
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valid as x ′ → 0− and Y =O(1). It further follows from (3.25) and (3.26) that the
conditions of matching with the solution in region 2b are

U00(Y ) =
3A

2ρw

Y 1/2 + · · ·

V01(Y ) = − 4B̃

25ρw

Y 1/2 + · · ·

V02(Y ) =
2B̃

5ρw

Y 1/2 lnY +
2B − 2B̃

5ρw

Y 1/2 + · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
as Y → 0. (3.28a–c)

We now substitute (3.27) into the boundary-layer equations (3.2)–(3.5). In the
leading-order approximation we have

− 2
5
U00U01 + U ′

00V01 = 0, (3.29a)

− 2
5
U00h01 + h′

00V01 = 0, (3.29b)

− 2
5
R00U01 − 2

5
U00R01 + (R00V01)

′ = 0, (3.29c)

h00 =
1

γ − 1

1

R00

, h01 = − 1

γ − 1

R01

R2
00

. (3.29d)

The next-order equations are

− 2
5
U00U02 + U ′

00V02 = 2
5

κ

R00

+ U00U01, (3.30a)

− 2
5
U00h02 + h′

00V02 = − 2
5
κ

U00

R00

+ U00h01, (3.30b)

− 2
5
R00U02 − 2

5
U00R02 + (R00V02)

′ = R00U01 + U00R01, (3.30c)

h02 = − 1

γ − 1

R02

R2
00

+
γ

γ − 1

κ

R00

. (3.30d)

We solve the leading-order problem (3.29) first. Substitution of (3.29d) into the
energy equation (3.29b) yields

2
5
U00R01 − V01R

′
00 = 0. (3.31)

This equation may be used to eliminate R01 from (3.29), leading to

2
5
U01 − V ′

01 = 0. (3.32)

Now using (3.32) to eliminate U01 from the momentum equation (3.29a), we find

U00V
′
01 − U ′

00V01 = 0,

or, equivalently (V01/U00)
′ = 0, which implies that V01/U00 does not depend on Y . It

follows from the matching conditions (3.28) that

V01 = − 8B̃

75A
U00(Y ). (3.33)

Working backwards through equations (3.32), (3.31) and (3.29d), we can further find
that

U01 = − 4B̃

15A
U ′

00(Y ), R01 = − 4B̃

15A
R′

00(Y ), h01 = − 4B̃

15A
h′

00(Y ).
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The equations for the second-order problem (3.30) may be manipulated in a similar
way. As a result we find, in particular, that(

V02

U00

)′

= 2
5
κ

(
1 − 1

R00U
2
00

)
. (3.34)

Since R00(Y ) → ρw as Y → 0, it follows from (3.28) that

R00U
2
00 =

9A2

4ρw

Y + · · · as Y → 0.

Integrating explicitly the singular part of (3.34), we see that the solution satisfying
the matching condition is

V02

U00

=
4

15

B − B̃

A
− 8

45

κρw

A2
lnY + 2

5
κ

∫ Y

0

(
1 − 1

M2
00

+
4ρw

9A2

1

Y

)
dY.

Here, function M00(Y ) = U00

√
R00 represents the distribution of the Mach number

across the boundary layer immediately upstream of the interaction region; the latter
will be considered in the next section.

4. The interaction region
The displacement effect of the boundary layer may be described in terms of the

angle ϑ made by the streamlines with respect to the body contour. It follows from
(3.1), (3.27) and (3.33) that in the main part of the boundary layer (region 2a)

ϑ =
v′

u′ = Re−1/2 V0

U0

+ · · · = Re−1/2(−x ′)−3/5 ln(−x ′)
V01

U00

+ · · ·

= Re−1/2(−x ′)−3/5 ln(−x ′)

(
− 8B̃

75A

)
+ · · · . (4.1)

Now we can estimate the pressure perturbations p′ induced by the displacement
effect of the boundary layer. According to the transonic inviscid flow theory, with
ϑ = O(δ) the pressure perturbations may be estimated as p ∼ δ2/3. Therefore, using
(4.1), we can write

p′ ∼ ϑ2/3 ∼ Re−1/3(−x ′)−2/5[ln(−x ′)]2/3.

We see that the pressure induced by the displacement effect experiences unbounded
growth as x → 0−, and despite the small factor Re−1/3 it may become the same order
as the original pressure (2.61) exerted upon the boundary layer. This happens when

(−x ′)2/5 ∼ Re−1/3(−x ′)−2/5
∣∣ ln(−x ′)

∣∣2/3. (4.2)

Suppose that −x ′ ∼ σ . Then it follows that

σ
∣∣ ln σ

∣∣−5/6
= Re−5/12.

This transcendental equation serves to determine σ , the longitudinal extent of the
interaction region. In this region, the pressure acting upon the boundary layer can no
longer be treated as independent of the flow inside the boundary layer. The interaction
region has the usual three-tiered structure sketched in figure 12. It is composed of the
viscous sublayer (shown as region 5), the main part of the boundary layer (region 4)
and an inviscid potential flow (region 3) situated outside the boundary layer. The
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2a

2b

σ

1

3

4

5

Figure 12. A sketch of the interaction region.

lower tier represents a continuation of viscous region 2b into the O(σ ) vicinity of
point O (see figure 4).

The middle tier, region 4, is a continuation of region 2a, and therefore, its thickness
is of O(Re−1/2). Since the flow in region 2a becomes predominantly inviscid as it
approaches the interaction region, we can expect the flow in region 4 also to be
inviscid. Finally, the upper tier is situated in the potential flow outside the boundary
layer. It serves to generate the pressure perturbations in response to the displacement
effect of the boundary layer. Also shown in figure 12 is the inviscid region 1 that was
studied in detail in § 2.

4.1. Region 5

Since η, as defined by (3.13), should remain O(1) in the viscous sublayer 2b, it follows
that the thickness of region 5 may be estimated as

y ′ = Re−1/2Y ∼ Re−1/2(−x ′)2/5 ∼ Re−1/2σ 2/5.

This means that the asymptotic analysis of the Navier–Stokes equations in region 5
should be based on the limit procedure

x∗ =
x ′

σ (Re)
= O(1), Y∗ =

y ′Re1/2

[σ (Re)]2/5
= O(1), Re → ∞. (4.3)

The form of the asymptotic expansions for the velocity components u′, v′, pressure
p, density ρ and viscosity µ may be inferred by re-expansion of the solution (3.23),
(3.14), (2.61) in region 2b in terms of variables (4.3). We have

u′(x ′, y ′; Re) = σ 1/5U ∗(x∗, Y∗) + · · · ,
v′(x ′, y ′; Re) = Re−1/2σ −2/5V ∗(x∗, Y∗) + · · · ,
p(x ′, y ′; Re) = σ 2/5P ∗(x∗, Y∗) + · · · ,
ρ (x ′, y ′; Re) = ρw + · · · , µ(x ′, y ′; Re) = µw + · · · .

⎫⎪⎪⎬⎪⎪⎭ (4.4)

The re-expansion also shows that the matching with the longitudinal velocity
component (3.23) in region 2b requires that

U ∗(x∗, Y∗) = (−x∗)
1/5 1

ρw

ψ ′(η) + · · · as x∗ → −∞. (4.5)

The argument (3.13) of function ψ(η) is expressed in terms of variables (4.3) as

η =
Y∗

(−x∗)2/5
. (4.6)
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Substitution of (4.4) into the Navier–Stokes equations leads to the (incompressible)
boundary-layer equations

U ∗ ∂U ∗

∂x∗
+ V ∗ ∂U ∗

∂Y∗
= − 1

ρw

∂P ∗

∂x∗
+

µw

ρw

∂2U ∗

∂Y 2
∗

,

∂P ∗

∂Y∗
= 0,

∂U ∗

∂x∗
+

∂V ∗

∂Y∗
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.7)

They should be solved with the no-slip conditions on the body surface

U ∗ = V ∗ = 0 at Y∗ = 0, (4.8)

and initial condition (4.5). Equations (4.7) also require a boundary condition for U ∗

at the outer edge of region 5. It may be derived as follows. We note that in the
main part of the boundary layer (region 4), the longitudinal velocity profile remains
unchanged to the leading order. Indeed, the pressure variations in the interaction
region are small. According to (4.5), �p ∼ σ 2/5. This means that the variations of the
longitudinal velocity �u ∼ σ 2/5. Hence, in region 4,

u(x, y; Re) = U00(Y ) + · · · . (4.9)

To perform the matching, we note that in region 4, y = Re−1/2Y . On the other hand,
in region 5, y = Re−1/2σ 2/5Y∗. Consequently,

Y = σ 2/5Y∗, (4.10)

which means that the argument Y of function U00(Y ) on the right-hand side of (4.9)
is small, and therefore, the (3.28a) is applicable. We have

u(x, y; Re) = σ 1/5 3A

2ρw

Y 1/2
∗ + · · · . (4.11)

Comparing (4.11) with the asymptotic expansion for u(x, y; Re) in (4.4), we find that
the sought boundary condition is,

U ∗(x∗, Y∗) =
3A

2ρw

Y 1/2
∗ + · · · as Y∗ → ∞. (4.12)

Let us now find the next-order term in (4.12). For this purpose, it is convenient to
introduce the stream function ψ∗(x∗, Y∗) such that

∂ψ∗

∂Y∗
= ρwU ∗,

∂ψ∗

∂x∗
= −ρwV ∗. (4.13a, b)

Integrating (4.13a) with (4.12), we find

ψ∗(x∗, Y∗) = AY 3/2
∗ + · · · as Y∗ → ∞.

Including the next-order term, we write

ψ∗(x∗, Y∗) = AY 3/2
∗ + G(x∗)Y

α
∗ + · · · as Y∗ → ∞, (4.14)

where it is assumed that α < 3/2, and G(x∗) is an arbitrary function. If α > 1/2, the
convective terms of the left-hand side of momentum equation (4.7) would be larger
than the pressure gradient; but the momentum equation then reduces to(

α − 1
2

)
G′(x∗) = 0,
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i.e. a non-trivial solution exists only if α = 1/2, for which the pressure gradient actually
interferes with the second term G(x∗)Y

α
∗ in (4.14). This suggests that (4.14) should be

modified to

ψ∗(x∗, Y∗) = AY 3/2
∗ + F (x∗) Y 1/2

∗ ln Y∗ + G(x∗) Y 1/2
∗ + · · · as Y∗ → ∞. (4.15)

Substitution of (4.15) into (4.13) and then into the momentum equation (4.7) yields

3A

2ρw

F ′(x∗) = −dP ∗

dx∗
. (4.16)

The appropriate initial condition for equation (4.16) may be deduced from (4.5). At
the outer edge of the viscous sublayer, function ψ(η) is given by (3.22) which, being
substituted into (4.5), yields

U ∗ =
(−x∗)

1/5

ρw

[
3
2
Aη1/2 − κρw

3A
η−1/2 ln η +

(
−2κρw

3A
+

B

2

)
η−1/2 + · · ·

]
. (4.17)

Using (4.6) in (4.17), we further have

U ∗ =
3A

2ρw

Y 1/2
∗ +

[
− κ

3A
(−x∗)

2/5 + · · ·
]
lnY∗

Y
1/2
∗

+

[
2κ

15A
(−x∗)

2/5 ln(−x∗) +

(
− 2κ

3A
+

B

2ρw

)
(−x∗)

2/5 + · · ·
]

1

Y
1/2
∗

+ · · · . (4.18)

On the other hand, substituting (4.15) into (4.13a), we find

U ∗ =
3A

2ρw

Y 1/2
∗ +

F (x∗)

2ρw

lnY∗

Y
1/2
∗

+
1

ρw

[
F (x∗) +

1

2
G(x∗)

]
1

Y
1/2
∗

+ · · · as Y∗ → ∞,

which, on being compared with (4.18), shows that

F (x∗) = −2κρw

3A
(−x∗)

2/5 + · · · as x∗ → −∞. (4.19)

The corresponding formula for the pressure is obtained from matching with (2.61) as

P ∗(x∗) = κ(−x∗)
2/5 + · · · as x∗ → −∞. (4.20)

Integrating (4.16) with initial conditions (4.19) and (4.20), we find

F (x∗) = −2ρw

3A
P ∗(x∗). (4.21)

4.2. Region 4

The form of the asymptotic expansions of the fluid dynamics functions in the main
part of the boundary layer (region 4) may be inferred by observing the behaviour
of the solution in the overlapping region between regions 4 and 5 (see figure 12).
Substituting (4.15) into (4.13) and then into (4.4) we find, using (4.10), that in the
overlapping region

u′ =
3A

2ρw

Y 1/2 + σ 2/5| ln σ |
[
F (x∗)

5ρw

1

Y 1/2
+ · · ·

]
+ σ 2/5

[
F (x∗)

2ρw

ln Y

Y 1/2
+

F (x∗)

ρw

1

Y 1/2
+

G(x∗)

2ρw

1

Y 1/2
+ · · ·

]
+ · · · ,
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v′ = Re−1/2σ −3/5| ln σ |
[

− 2

5ρw

F ′(x∗)Y
1/2 + · · ·

]
+ Re−1/2σ −3/5

[
−F ′(x∗)

ρw

Y 1/2 lnY − G′(x∗)

ρw

Y 1/2 + · · ·
]

+ · · · .

This suggests that the solution in region 4 should be sought in the form

u′(x ′, y ′; Re) = U00(Y ) + σ 2/5| ln(σ )| Ũ 1(x∗, Y ) + σ 2/5Ũ 2(x∗, Y ) + · · · ,
v′(x ′, y ′; Re) = Re−1/2σ −3/5| ln(σ )| Ṽ 1(x∗, Y ) + Re−1/2σ −3/5Ṽ 2(x∗, Y ) + · · · ,
ρ(x ′, y ′; Re) = R00(Y ) + σ 2/5| ln(σ )| R̃1(x∗, Y ) + σ 2/5R̃2(x∗, Y ) + · · · ,
h(x ′, y ′; Re) = h00(Y ) + σ 2/5| ln(σ )| h̃1(x∗, Y ) + σ 2/5h̃2(x∗, Y ) + · · · ,
µ(x ′, y ′; Re) = µ00(Y ) + σ 2/5| ln(σ )| µ̃1(x∗, Y ) + σ 2/5µ̃2(x∗, Y ) + · · · ,
p(x ′, y ′; Re) = σ 2/5P̃ 1(x

∗, Y ) + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.22)

where functions U00(Y ) and Ṽ 1(x∗, Y ) are such that

U00(Y ) =
3A

2ρw

Y 1/2 + · · ·

Ṽ 1(x∗, Y ) = − 2

5ρw

F ′(x∗)Y
1/2 + · · ·

⎫⎪⎪⎬⎪⎪⎭ as Y → 0. (4.23)

Substitution of (4.22) into the Navier–Stokes equations yields

U00(Y )
∂Ũ 1

∂x∗
+ Ṽ 1U

′
00(Y ) = 0, (4.24a)

∂P̃ 1

∂Y
= 0, (4.24b)

U00(Y )
∂h̃1

∂x∗
+ Ṽ 1h

′
00(Y ) = 0, (4.24c)

R00(Y )
∂Ũ 1

∂x∗
+ U00(Y )

∂R̃1

∂x∗
+ R00(Y )

∂Ṽ 1

∂Y
+ Ṽ 1R

′
00(Y ) = 0, (4.24d)

h00 =
1

(γ − 1)R00(Y )
, h̃1 = − R̃1

(γ − 1)[R00(Y )]2
. (4.24e)

Substituting (4.24e) into the energy equation (4.24c), we find that

U00(Y )
∂R̃1

∂x∗
+ Ṽ 1R

′
00(Y ) = 0,

which, being combined with the continuity equation (4.24d), shows that the latter
may be written in the form

∂Ũ 1

∂x∗
+

∂Ṽ 1

∂Y
= 0. (4.25)

We use (4.25) to eliminate Ũ 1 from the momentum equation (4.24a). We have

U00(Y )
∂Ṽ 1

∂Y
− Ṽ 1U

′
00(Y ) = 0,

or, equivalently,

∂

∂Y

(
Ṽ 1

U00

)
= 0. (4.26)
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Equation (4.26) should be integrated with initial conditions (4.23), leading to

Ṽ 1

U00

= − 4

15A
F ′(x∗).

Using the asymptotic expansions (4.22), we find that in region 4 the slope of the
streamlines

ϑ =
v′

u′ = Re−1/2σ −3/5| ln σ | Ṽ 1

U00

+ · · ·

= Re−1/2σ −3/5| ln σ |
[
− 4

15A
F ′(x∗)

]
+ · · · . (4.27)

4.3. Region 3

The flow in the upper tier (region 3 in figure 12) is governed by the transonic small
perturbation theory. When analysing this flow, we shall use the Cartesian coordinates
(x, y). Guided by (4.27) we introduce a small parameter,

δ = Re−1/2σ −3/5| ln σ | = σ 3/5,

and expand the fluid dynamic functions in region 3 as

u(x, y; Re) = 1 + δ2/3u1(x∗, y∗) + δ4/3u2(x∗, y∗) + · · · ,
v(x, y; Re) = δv1(x∗, y∗) + δ2v2(x∗, y∗) · · · ,
p(x, y; Re) = δ2/3p1(x∗, y∗) + δ4/3p2(x∗, y∗) + · · · ,
ρ(x, y; Re) = 1 + δ2/3ρ1(x∗, y∗) + δ4/3ρ2(x∗, y∗) + · · · ,

h(x, y; Re) =
1

γ − 1
+ δ2/3h1(x∗, y∗) + δ4/3h2(x∗, y∗) + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.28)

with order-one independent variables defined as

x∗ =
x

σ
= O(1), y∗ =

y

σδ−1/3
= O(1). (4.29)

Substitution of (4.28), (4.29) into the Navier–Stokes equations yields in the leading-
order approximation

∂u1

∂x∗
= −∂p1

∂x∗
, (4.30a)

∂v1

∂x∗
= −∂p1

∂y∗
, (4.30b)

∂h1

∂x∗
=

∂p1

∂x∗
, (4.30c)

∂u1

∂x∗
= −∂ρ1

∂x∗
, (4.30d)

h1 = − 1

γ − 1
ρ1 +

γ

γ − 1
p1. (4.30e)
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The far-field conditions for these equations follow from matching asymptotic
expansions (4.28) with the solution (2.18), (2.19) and (2.21) in region 1. We have

u1 =
1

γ + 1
y1/2

∗ F ′
0(ξ ) + · · ·

v1 =
1

γ + 1
y3/4

∗
[

7
4
F0(ξ ) − 5

4
ξF ′

0(ξ )
]
+ · · ·

p1 = − 1

γ + 1
y1/2

∗ F ′
0(ξ ) + · · ·

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
as y∗ → ∞, (4.31a–c)

where

ξ =
x∗

y
5/4
∗

.

Integration of the x-momentum (4.30a) and energy (4.30c) equations yields

u1 = −p1, h1 = p1. (4.32a, b)

Substituting (4.32b) into the state equation (4.30e), we further find that

ρ1 = p1. (4.33)

We see that ρ1 = −u1, which means that the continuity equation (4.30d) is satisfied
automatically, leaving us with the y-momentum equation (4.30b). In view of the first
of equations (4.32) it may be written in the form

∂u1

∂y∗
− ∂v1

∂x∗
= 0. (4.34)

This equation, considered on its own, is not sufficient to determine the flow field in
region 1, which is why we must turn to the second-order approximation.

The second-order equations are written as

∂u2

∂x∗
+ (u1 + ρ1)

∂u1

∂x∗
= −∂p2

∂x∗
, (4.35a)

∂h2

∂x∗
+ (u1 + ρ1)

∂h1

∂x∗
=

∂p2

∂x∗
+ u1

∂p1

∂x∗
, (4.35b)

∂

∂x∗
(u2 + ρ2 + ρ1u1) +

∂v1

∂y∗
= 0, (4.35c)

h2 =
1

γ − 1

(
−ρ2 + ρ2

1

)
+

γ

γ − 1
(p2 − ρ1p1). (4.35d)

Here we have omitted the y-momentum equation, as it will not be required for the
analysis that follows.

Using (4.32) and (4.33), we can express equations (4.35) in the form

∂u2

∂x∗
= −∂p2

∂x∗
, (4.36a)

∂h2

∂x∗
=

∂p2

∂x∗
− u1

∂u1

∂x∗
, (4.36b)

∂

∂x∗

(
u2 + ρ2 − u2

1

)
+

∂v1

∂y∗
= 0, (4.36c)

h2 =
γ

γ − 1
p2 −

(
1

γ − 1
ρ2 + u2

1

)
. (4.36d)



418 A. I. Ruban, X. Wu and R. M. S. Pereira

Equations (4.36a) and (4.36b) are easily integrated to yield

u2 = −p2, h2 = p2 − 1
2
u2

1. (4.37a, b)

Equation (4.37b) is used to eliminate h2 from (4.36d) to obtain

ρ2 = p2 − 1
2
(γ − 1)u2

1. (4.38)

Combining (4.38) with (4.37a), we have

u2 + ρ2 = −1

2
(γ − 1)u2

1,

substitution of which into the continuity equation (4.35c) leads to the Kármán–
Guderley equation

(γ + 1)u1

∂u1

∂x∗
− ∂v1

∂y∗
= 0. (4.39)

It should be considered together with the zero vorticity equation (4.34).
The far-field boundary conditions for the set of equations (4.39) and (4.34) are given

by (4.31a, b). In order to close the problem, we must also formulate the matching
condition with the solution in the main part of the boundary layer (region 4 in
figure 12). According to (4.28), the slope of the streamlines in region 3

ϑ =
v

u
= δv1(x∗, y∗) + · · · .

This, being compared with (4.27), shows that

v1

∣∣∣
y∗=0

= − 4

15A
F ′(x∗).

Here, function F (x∗) is related to the pressure P ∗(x∗) acting in the boundary layer via
equation (4.21). Hence,

v1

∣∣∣
y∗=0

=
8ρw

45A2

dP ∗

dx∗
. (4.40)

Since the pressure does not change across regions 4 and 5, we can deduce, by
comparing the asymptotic expansions for pressure in (4.4) and (4.28), that

p1

∣∣∣
y∗=0

= P ∗(x∗).

Finally, using (4.32a), we can express (4.40) in the form

v1 = − 8ρw

45A2

∂u1

∂x∗
at y∗ = 0. (4.41)

This completes the formulation of the interaction problem.

4.4. Interaction problem

For further discussion, it is convenient to introduce the velocity potential φ1(x∗, y∗)
such that

u1 =
1

γ + 1

∂φ1

∂x∗
, v1 =

1

γ + 1

∂φ1

∂y∗
. (4.42)

The existence of this function follows from the zero vorticity equation (4.34).
With (4.42), the Kármán–Guderley equation (4.39) takes the form

∂φ1

∂x∗

∂2φ1

∂x2
∗

− ∂2φ1

∂y2
∗

= 0. (4.43)
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It should be solved with the condition of interaction with the boundary layer (4.41),

∂φ1

∂y∗
= − 8ρw

45A2

∂2φ1

∂x2
∗

at y∗ = 0, (4.44)

and the far-field boundary condition (4.31) which, being in terms of φ1, has the form

φ1 = y7/4
∗ F0(ξ ) + · · · as y∗ → ∞. (4.45)

It should be noted that function F0(ξ ) in (4.45) is not uniquely defined. It depends
on choice of the group constant Λ in (2.30) or, equivalently, on the value of coefficient
d0 in the asymptotic formula (2.23). This arbitrariness reflects the fact that the flow
in the interaction region depends on the nature of the inviscid flow outside this
region. Still, it is easily seen that all transonic flows accelerating into a Prandtl–Meyer
expansion fan are similar to one another. The similarity rule is expressed by the affine
transformations

φ1 = �7/6d
5/12
0 ϕ, x∗ = �5/6d

−5/12
0 x, y∗ = �2/3d

−5/6
0 y,

where � =8ρw/45A2. Note that here in after x and y represent the canonical variables.
These transformations reduce the interaction problem (4.43)–(4.45) to the following

canonical form. They leave equation (4.43) unchanged,

∂ϕ

∂x

∂2ϕ

∂x2
− ∂2ϕ

∂y2
= 0, (4.46a)

while simplifying the interaction condition (4.44) to

∂ϕ

∂y
= −∂2ϕ

∂x2
at y = 0. (4.46b)

The far-field boundary condition (4.45) also preserves its form

ϕ = y7/4F0(ξ ) + · · · as y → ∞, ξ =
x

y5/4
= O(1), (4.46c)

but now function F0(ξ ) is uniquely defined. It should be calculated by solving equation
(2.22) subject to initial condition (2.31) for k =5/4.

4.5. Finite-distance singularity

One of the main motivations for developing the theory of viscous–inviscid interaction
was the need to describe the upstream influence in transonic and supersonic flows.
During the 1940s and 1950s many experimentalists and theoreticians were involved in
discussions of this phenomenon (see, for example, Chapman, Kuehn & Larson 1956).
The first theoretical explanation of the upstream influence was given by Lighthill
(1953). In the case of a supersonic boundary-layer flow, he demonstrated that if a
perturbation is introduced in the boundary layer near point x = 0, then it would
propagate upstream of this point with the pressure decaying as

p = CeKx + · · · as x → −∞. (4.47)

Here Lighthill’s solution is expressed in the notations of the viscous–inviscid
interaction problem (1.2)–(1.5), (1.6a) which, of course, was formulated sixteen years
later. Factor C in (4.47) depends on the nature and magnitude of the perturbation
introduced into the boundary layer, whereas K > 0 is a universal constant which
depends on the free-stream Mach number and the skin friction in the boundary layer
immediately upstream of the interaction region.
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On writing C =sign(C) exp(Kxs), xs = K−1 ln |C|, (4.47) takes the form

p = sign(C) exp(K(x + xs)),

signifying that (apart from an arbitrary shift xs along the body surface) the interaction
problem (1.2)–(1.5), (1.6a) admits two types of solution. The first one corresponds
to sign(C) > 0 when the pressure grows in the boundary layer causing it to separate
at some point on the body surface. The second solution, sign(C) < 0, corresponds to
the self-induced acceleration of the flow in the interaction region which terminates by
a singularity at a finite point x = x0. Neiland & Sychev (1966) and Neiland (1969b)
were the first to describe this singularity in their analysis of the supersonic flow
accelerating into a Prandtl–Meyer fan.

The transonic flow considered in this paper is also expected to undergo a monotonic
acceleration along the wall, leading to a singularity at a finite point on the body
contour. To determine the form of this singularity, we shall write equation (4.46a) in
the form

u
∂u

∂x
− ∂v

∂y
= 0,

∂u

∂y
− ∂v

∂x
= 0, (4.48)

where

u =
∂ϕ

∂x
, v =

∂ϕ

∂y
.

In a region where the longitudinal velocity component u is positive (which is
certainly the case near the singularity) the set of equations (4.48) is hyperbolic. It has
two families of characteristics. The first one is defined by the equation

dy

dx
=

1√
u

,

with the corresponding Riemann invariant being

2
3
u3/2 − v = ζ. (4.49)

Similarly, on the characteristics of the second family

dy

dx
= − 1√

u
, 2

3
u3/2 + v = η. (4.50a, b)

Parameter ζ in (4.49) remains constant along each characteristic, but might be different
for different characteristics, and is expected to grow with the flow acceleration.
Contrary to that, parameter η in (4.50) remains finite. Indeed, according to (4.50a),
the characteristics of the second family take their origin in the upstream flow field
where u and v are finite, making η finite. Hence, when the velocity components u

and v become large on approach to the singularity, η may be disregarded in (4.50b),
reducing it to

2
3
u3/2 + v = 0. (4.51)

In particular, equation (4.51) may be considered on the wall where, according to
(4.46b),

v = −∂u

∂x
. (4.52)

Eliminating v from (4.51) and (4.52), we have

2
3
u3/2 =

∂u

∂x
at y = 0.
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Figure 13. The pressure distribution in the interaction region.

This equation is easily integrated to give

u

∣∣∣
y=0

=
9

(x0 − x)2
+ · · · as x → x−

0 . (4.53)

Here, the constant of integration is denoted by x0 to show that it represents the
position of the singularity on the body contour. Since the boundary-value problem
(4.46) is invariant with respect to an arbitrary shift in the x-direction, we can choose
x0 = 0 in (4.53).

4.6. Numerical solution of the interaction problem

In order to construct the solution to the interaction problem (4.46), we used a
numerical scheme which employs finite differencing in the x-direction and a Chebyshev
collocation method in the y-direction. The x-derivatives in the Kármán–Guderley
equation (4.46a) were approximated in the same way as in the Murman & Cole
(1971) scheme; see also Cole & Cook (1986). For the derivative ∂2ϕ/∂x2 on the
right-hand side of the interaction law (4.46a), the central differencing was used to
allow the solution to account for upstream propagation of the perturbations. The
y-derivatives in both the Kármán–Guderley equation (4.46a) and interaction law
(4.46b) were evaluated with the help of the Chebyshev collocation method; see, for
example, Canuto et al. (1988). The resulting set of nonlinear algebraic equations was
solved using the Newton–Rhapson iteration.

The results of the calculations are shown in figure 13 in the form of pressure
p = −∂ϕ/∂x distribution along the body contour. Various grids were used, and it was
found that with 40 Chebyshev polynomials and 150 points in the x-direction, the
results are correct to four significant figures. The difference between the numerical
results and asymptotic formula (4.53) reaches 1% at x = −0.46, and then diminishes
further as x → 0−.

The singularity (4.53) is identical to the one encountered by Neiland & Sychev
(1966) and Neiland (1969b) in their study of the supersonic flow over a sharp bend,
say, a convex corner on the body contour. Assuming the Reynolds number to be
large, they used the Prandtl–Meyer solution for the inviscid part of the flow outside
the boundary layer. When passing through the Prandtl–Meyer expansion fan, the
pressure of the gas in this region falls by an order-one amount, i.e.

�p = O(1). (4.54)
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In the triple-deck region upstream of the corner

�p = O(Re−1/4). (4.55)

Obviously, matching between (4.54) and (4.55) is only possible if the solution of the
triple-deck problem upstream of the corner develops a singularity like (4.53).

Neiland & Sychev (1966) and Neiland (1969b) gave a detailed description of the
flow behaviour in the O(Re−1/2) × O(Re−1/2) region around the corner point as
well as downstream of this region. When the transonic flow undergoes acceleration
through (4.53), its behaviour becomes indistinguishable from that in the corresponding
supersonic flow. As a result, the theory of Neiland & Sychev (1966) and Neiland
(1969b) appears to be directly applicable to the flow considered in this paper.

5. Conclusions
In this paper we analysed, first of all, the inviscid transonic flow near a corner point

O where the body contour is defined by equation (2.14). We found that for 1<α < 8/5
the solution is influenced by the body shape both upstream and downstream of corner
point O in figure 4 despite the downstream part of this flow being supersonic for
α > 3/2. As soon as parameter α reaches its critical value of α = 8/5, the solution is
found to represent a flow that undergoes very fast acceleration to form a Prandtl–
Meyer fan. The latter blocks upstream propagation of the perturbations. As a result
the flow field ‘freezes’, in the sense that it can no longer change with further bending
of the body contour downstream of point O . This suggests that the inviscid transonic
flow may accelerate into a Prandtl–Meyer expansion fan, not only when the gas
moves over a convex corner (as it happens in supersonic flows), but also for a wider
class of body shapes. The solution in the limiting case with α = 8/5 is applicable to
these situations.

Then the reaction of the boundary layer to the singular behaviour of the pressure
gradient in the Prandtl–Meyer solution was analysed. We found that the Prandtl–
Meyer flow represents one more example of unusual behaviour of transonic flows
in the viscous–inviscid interaction region. Their distinctive nature is revealed, most
notably, in the formulation of the interaction problem (4.46), which proves to be quite
different from that in the corresponding supersonic and subsonic flows (1.1)–(1.6).
In the study of the transonic viscous–inviscid interaction, the main difficulty lies in
the calculation of the inviscid flow in the upper tier, where the nonlinear Kármán–
Guderley equation (4.46a) should be solved. In the supersonic and subsonic flows,
the solution in the upper tier is linear, leading to the interaction relations given by
the Ackeret formula (1.6a) and Hilbert integral (1.6b), respectively. These are coupled
with boundary-layer equations. In contrast, in the present transonic problem, we
need not solve the boundary-layer equations (1.1)–(1.2); instead, the influence of the
boundary layer is expressed through a simple boundary condition (4.46b) for the
inviscid flow. In this respect, the transonic interaction problem considered here is
similar to the incompressible boundary-layer separation on a moving wall (see Sychev
1984).

The reason for this difference is that transonic flow is capable of producing an
extreme pressure gradient that acts on the boundary layer before the interaction
region. In particular, in the transonic flow expanding into a Prandtl–Meyer fan, the
pressure gradient is expressed by equation (3.6), i.e.

dp

dx
= −2

5

κ

(−x)3/5
+ · · · as x → 0−. (5.1)
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It is weaker than the pressure gradient (1.8) observed in transonic flow separating
from a convex corner (Ruban & Turkyilmaz 2000), but stronger as compared to the
pressure gradient (1.7) in the analogous subsonic flow (Ruban 1974).

As a result of the action of the pressure gradient (5.1), the gas in the boundary
layer experiences an extreme acceleration. This changes the velocity profile across the
boundary layer. In particular, near the wall, instead of being a linear function of Y , it
behaves as U ∼ Y 1/2; see (3.28). An ‘inspection analysis’ presented in Appendix B of
Ruban & Turkyilmaz (2000) suggested that under these conditions the contribution
of the viscous sublayer (region 5 in figure 12) would be comparable with that of
the main part of the boundary layer (region 4). However, a more detailed analysis
presented in this paper shows that the solution develops a logarithmic behaviour
(4.15) at the outer edge of the viscous sublayer, which determines the displacement
effect of the boundary layer. It therefore may be said that the main contribution to
the displacement thickness is produced by the overlapping region that lies between
the viscous sublayer (region 5) and main part of the boundary layer (region 4).

The theory of the boundary-layer separation in transonic flows is still in its infancy.
Many important questions remain unanswered. Of particular interest is the question
of why the shock wave, closing the local supersonic region on the upper surface of
a wing, is observed to start oscillating as soon as it becomes strong enough to cause
the boundary-layer separation. Another problem to consider concerns the turbulent
boundary-layer separation at transonic speed. Does the dominance of the inviscid
processes in the interaction region imply that the turbulent boundary-layer separation
proceeds in a way that is similar to the laminar boundary-layer separation?
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